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Abstract. We compute the fermionic radiative contributions to the decay H+ → W+(∗)A0 in the framework
of models with two Higgs doublets (2HDM), for the case of an on-shell and off-shell W . We show that, in
the majority of the cases, current measurements of the ρ parameter suggest MH± ≥ MA and such decays
could invalidate current charged Higgs searches or aid detection in the region MH± ≈ MW . We find that
the radiative corrections may approach 50% for small values of tan β.

1 Introduction

The search for the Higgs boson (φ0)[1] of the standard
model (SM) [2] is one of the major challenges for present
and future colliders. In recent years there has been grow-
ing interest in the study of extended Higgs sectors with
more than one Higgs doublet [3]. The simplest extension
is the two Higgs doublet model (2HDM), and such a struc-
ture is required for the minimal supersymmetric standard
model (MSSM). Models with two (or more) Higgs dou-
blets predict the existence of charged Higgs bosons, and
their discovery would be conclusive evidence of an ex-
tended Higgs sector. In the 2HDM extension of the SM,
from the eight degrees of freedom initially present in the
two Higgs doublets, only five remain after the electroweak
symmetry breaking and should become manifest as phys-
ical particles: two charged Higgs scalars (H±), two CP
even scalars (h0 and H0) and one CP odd scalar (A0). Ac-
curate predictions for the branching ratios (BR) of these
particles are required in order to facilitate the searches and
in this paper we consider the radiative corrections to the
decay H± → A0W (∗). In the non-supersymmetric 2HDM
(hereafter to be called simply 2HDM), the masses MA and
MH± may be taken as free parameters, so one may con-
sider both the case of an off-shell and on-shell W . This
is in contrast to the MSSM in which MA and MH± are
correlated and the two-body decay is never allowed. We
shall show that current measurements of the ρ parameter
strongly suggest MH± ≥MA for MH± ≥ 100 GeV.

Recently it has been shown that the decay H± →
A0W ∗ may be dominant or even close to 100% in the
2HDM (Model I) over a wide range of parameter space
relevant at LEP-II [4]. This would affect current charged
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Higgs searches at LEP-II [5,6] and the Tevatron [7] which
only assume the decays H± → τντ and cs. We there-
fore feel that it is important to calculate the fermionic
radiative corrections to this potentially strong tree-level
process. An additional opportunity to use the three-body
decay would be the possibility of detection in the diffi-
cult MH± ≈ MW region, which is considered marginal
if H± conventionally decays to two fermions. Although
a thorough analysis is beyond the scope of this paper,
the three-body decay would give rise to high multiplic-
ity signatures of more than four jets, with a possibility
of detection above the strong WW background. We note
that the 2HDM with the popular Model II type structure
cannot possess a H± in the discovery range of LEP-II
due to constraints from b → sγ [8] (see also [9] which
derives the lower bound MH± ≥ 165 GeV), while H± in
Model I avoids such constraints and so may be light. We
note that it is possible to have the Model II type struc-
ture and weaken the above bound on MH± in a 2HDM
which relaxes natural flavor conservation (NFC) [10] or a
general model with N(≥ 3) doublets [11]. In this paper we
are concerned with the 2HDM which imposes NFC. Limits
on MH± from the Tevatron are tanβ dependent since one
requires a significant BR(t → H+b) in order to obtain a
visible signal. In the 2HDM with the Model II type struc-
ture this BR can be significant for small (≤ 1) or large
(≥ 40) values of tanβ. For the Model I type structure this
is only possible at low tanβ.

Current mass bounds from LEP-II for the A0 of the
MSSM force MH± ≥ 110 GeV in this model, thus taking
H± out of the LEP-II discovery range [12]. In addition, a
recent analysis of the MSSM charged Higgs contributions
to b → sγ [13] requires MH± ≥ 110 GeV, a limit valid
in both the MSSM and its simplest extension by adding
a Higgs singlet superfield (NMSSM). Therefore, from the
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point of view of charged Higgs phenomenology at LEP-
II one may consider the 2HDM (Model I) but not more
popular extended structures. We will present results for
the case of W on shell and off shell for charged Higgs
masses of interest at LEP-II and the LHC.

This paper is organized as follows. In Sect. 2 we intro-
duce our notation and the models in question. In Sect. 3
we evaluate the fermionic one loop corrections for the case
of an on-shell and off-shell W , while Sect. 4 displays the
counterterms. In Sect. 5 we present our results, and Sect. 6
contains our conclusions.

2 Notation, couplings and lowest order results

2.1 Notation and relevant couplings

In this paper we will use the following notation and con-
ventions. The momentum of the charged Higgs boson H+

is denoted by pH (pH is incoming), pW is the momentum
of the W+ gauge boson and pA the momentum of the CP
odd A0 (pW and pA are outgoing).

The relevant part of the lagrangian describing the in-
teraction of the W± with H± and A0, comes from the
covariant derivative and is given by

L =
e

2sW
W+

µ (H− ↔
∂

µ

A0) + h.c. (2.1)

This interaction is model independent (SUSY or
non-SUSY) and it depends only on standard parameters:
the electric charge (e) and the Weinberg angle (sW =
sin θW).

As we are concerned with the fermionic one loop cor-
rections, we will below give the relevant couplings. In the
2HDM there exist four different ways to couple the Higgs
fields to matter (we assume natural flavor conservation
[14]). The two most popular are: Model I: The quarks and
leptons couple only to one of the two Higgs doublet exactly
as in the minimal standard model. Model II: To avoid the
problem of flavor changing neutral currents (FCNC), one
assumes that one of the two Higgs fields couples only to
down quarks (and charged leptons) and the other one cou-
ples to up quarks (and neutral leptons). Model type II is
the pattern found in the MSSM.

In general, the couplings of the charged Higgs boson
H±, the Goldstone G±, the CP odd A0 and the gauge
boson W± to a pair of fermions are

H+ud̄ = Y L
ud

(1− γ5)
2

+ Y R
ud

(1 + γ5)
2

,

G+ud̄ = GL
ud

(1− γ5)
2

+ GR
ud

(1 + γ5)
2

,

A0uū = Yuuγ5, A0dd̄ = Yddγ5,

W+
µ ud̄ = −i

gVud√
2

γµ
(1− γ5)

2
. (2.2)

Here u(d) may refer to any generation of up (down) quark
and the Y couplings are defined as follows:

Y L
ud =

igVudmu√
2MW tanβ

, Y R
ud = − igVudmd√

2MW tanβ
Model I,

Y L
ud =

igVudmu√
2MW tanβ

, Y R
ud =

igVudmd tanβ√
2MW

, Model II,

Yuu = − gmu

2MW tanβ
, Ydd =

gmd

2MW tanβ
, Model I,

Yuu = − gmu

2MW tanβ
, Ydd = −mdg tanβ

2MW
, Model II,

GL
ud =

gmuVud√
2MW

, GR
ud = −gmdVud√

2MW

. (2.3)

Vud is the Kobayashi–Maskawa matrix element which we
will take to be diagonal. It is worth noting that Models
I and II are not very different for the top–bottom loop
corrections at low tanβ because the term mt/ tanβ will
dominate and it is common to both types.

2.2 Lowest order results

The lowest order Feynman diagram for the two-body de-
cay H+ → A0W+ and for the three-body decay H+ →
A0W ∗ → A0ff ′ (where f and f ′ are different flavors of
fermion) are depicted in the following figure:
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Fig. 1. Feynman diagrams for the Born approximation to the
decay H+ → A0W+∗, W on shell a, W off shell b

In the Born approximation, the decay amplitude of the
charged Higgs into the on-shell CP odd Higgs boson A0

and the gauge boson W+ (Fig. 1a) can be written as:

M0(H+ →W+A0) = ε∗
µΓµ

0 , where

Γµ
0 = i

e

2sW
(pH + pA)µ. (2.4)

Here ε is the W polarization vector. We then have the
following decay width:

Γ 0
on =

α

16s2
WM2

W M3
H±

λ
3
2 (M2

H± , M2
A, M2

W ), (2.5)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) is the
familiar two-body phase space function. Note that in the
MSSM the two-body decay of the charged Higgs boson
into W+A0 is kinematically not allowed.

Below threshold, and taking into account that the vir-
tual W ∗ decays into a pair of fermions ff ′ (f 6= t) (Fig. 1b)
which we will take to be massless, the Dalitz plot density
for this three-body decay H+ → A0W+∗ → A0ff ′ is given
by [15]

dΓ 0
off

dx1dx2
= 9

α2

32πs4
W

MH±
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× [(1− x1)(1− x2)− κA]
([1− x1 − x2 − κA + κW ]2 + κW γW )

,

where

κA,W =
M2

A,W

M2
H±

, γW =
Γ 2

W

M2
H±

,

ΓW is the total width of the W gauge boson and xi =
2Ei/MH± are the scaled energies of the massless fermions
in the final state. We note that in the non-SUSY 2HDM
null searches at LEP in the e+e− → h0A0, h0Z chan-
nels eliminate regions in the MA, Mh plane [6,16]. The
excluded region does not have a simple shape, and there
are still areas which allow MA +Mh ≤ 90 GeV. Thus, MA

may be taken as light as 10 GeV. This is in contrast to
the MSSM in which one can derive individual lower limits
on the masses, of Mh ≥ 70.7 GeV and MA ≥ 71.0 GeV
[16]. Therefore, the off-shell decay in the 2HDM can be
relevant even for a small MH± (≤ 80 GeV) in the range
at LEP-II.

3 Fermionic radiative corrections

We have evaluated the fermionic radiative corrections to
H+ → W+A0 (for both the on-shell and off-shell W ) at
the one loop level. This set of corrections is ultra-violet
(UV) divergent. The UV singularities are treated by di-
mensional regularization [17] in the on-mass-shell renor-
malization scheme.

The typical Feynman diagrams for the virtual correc-
tions of order α are drawn in Fig. 2. These comprise
the vertex correction (Fig. 2a1, Fig. 2a2), the W+–W−
self-energy (Fig. 2a3) and the mixed W+–G− self-energy
(Fig. 2a4). Note that diagrams 2a3 and 2a4 are not to be
considered if the gauge boson W is on shell.
Figures 2b1,b2,b3 show the fermion loop corrections to
H±, G± and A0, respectively. These contributions have
to be supplemented by the counterterm renormalizing the
vertex H+A0W− (Fig. 2c1), the counterterm for the off-
shell W gauge boson self-energy (Fig. 2c2) and by the
counterterm for the mixing W–G (Fig. 2c3). These Feyn-
man diagrams are generated and computed using the Fey-
nArts and FeynCalc [18,19] packages. We also use the for-
tran FF package [20] in the numerical analysis. Note that
in the general 2HDM, the vertices W+A0G−, W+G0H−
and A0H+H− are not present, and so the mixing G+–
H−, G0–A0 and W+–H− does not give any contribution
to our process.

The one loop amplitudeM1 can be written as

M1(H+ →W+A0) = ε∗
µΓµ. (3.1)

Using Lorentz invariance, Γµ can be projected as

Γµ =
e

2sW
(ΓHpµ

H + ΓW pµ
W ). (3.2)

ΓH and ΓW can be cast as follows:

ΓW = Γ vertex
W + ΓW+W −

W + ΓW+G−
W

+δΓ vertex
W + δΓW+W −

W + δΓW+G−
W , (3.3)

ΓH = Γ vertex
H + ΓW+W −

H + δΓ vertex
H + δΓW+W −

H , (3.4)
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Fig. 2. Feynman diagrams for the one loop corrections to the
decay H+ → A0W+∗: vertex (a1 and a2), WW self-energy (a3),
W–G mixing (a4). Charged Higgs boson, Goldstone boson and
CP odd self-energies (b1,2,3). (b4,5,6) WW , ZZ and γγ self-
energies. (c1) is the vertex counterterm, (c2) W the self-energy
counterterm and (c5) is the W–G mixing counterterm

where Γ vertex
W,H , ΓW+W −

W,H and ΓW+G−
W are respectively the

contribution of the two vertices, the contribution of the
self-energy of the W and the contribution of the mixed
W+G− self-energy; δΓ vertex

W,H , δΓW+W −
W,H and δΓW+G−

W are
the counterterms needed to remove the UV divergences
contained in Γ vertex

W,H , ΓW+W −
W,H and ΓW+G−

W . In what fol-
lows, we write the above one loop corrections explicitly.
The expressions for the counterterms can be found in
Sect. 4.

3.1 Vertex with u–u–d exchange: Fig. 2a1

The amplitude of the u–u–d quarks contribution to
H+A0W+ vertex is given by

Γuud
H = NC

α

2π
√

2M2
H±

Yuu

×
(

(−m2
d − 3M2

H± + m2
u)Y L

udB0(M2
H± , m2

d, m
2
u)
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+(m2
d −m2

u)Y L
udB0(0, m2

d, m
2
u)

−2M2
H±{(m2

uY L
ud + mdmuY R

ud)C0

+Y L
ud[p

2
W C1 − 2C00

+(−M2
A + M2

H± − p2
W )C12 − 2M2

AC22]}
)
, (3.5)

Γuud
W = NC

α

π
√

2

×Yuu

(
Y L

udB0(M2
H± , m2

d, m
2
u)

+mu(muY L
ud + mdY

R
ud)C0

−Y L
ud{(M2

A −M2
H±)C1 + M2

AC2 + 2C00

+(M2
A −M2

H± + p2
W )C11

+(3M2
A −M2

H± + p2
W )C12 + 2M2

AC22}
)
, (3.6)

with A0, B0, Ci and Cij the Passarino–Veltman functions
[21] which we define in Appendix A. NC = 3 for quarks
and 1 for leptons. All the Ci and Cij have the same argu-
ments: (p2

W , M2
H± , M2

A, m2
u, m2

d, m
2
u)

3.2 Vertex with d–d–u exchange: Fig. 2a2

The amplitude of this diagram can be obtained from the
above one just by making the following replacement:

Γ ddu
H,W = Γuud

H,W [mu ←→md, Y R
ud ←→Y L

ud, Yuu → Ydd].

The total contribution of the vertex is

Γ vertex
W,H = Γuud

W,H + Γ ddu
W,H .

3.3 W +–W − self-energy: Fig. 2a3

The contribution of the W self-energy Fig. 2a3 evaluates
to

ΓWW
H =

NCα

2πs2
W(p2

W −M2
W )

×{A0(m2
u) + m2

dB0(p2
W , m2

d, m
2
u)

−2B22(p2
W , m2

d, m
2
u)

+p2
W B1(p2

W , m2
d, m

2
u)},

ΓWW
W = − NCα

4πs2
W(p2

W −M2
W )

×{A0[m2
u] + m2

dB0(p2
W , m2

d, m
2
u)

−2B22(p2
W , m2

d, m
2
u)

+p2
W B1(p2

W , m2
d, m

2
u)

+2(M2
H± −M2

A)(B1(p2
W , m2

d, m
2
u)

+B21(p2
W , m2

d, m
2
u)}. (3.7)

3.4 W–G mixing: Fig. 2a4

In accordance with Lorentz invariance, the mixing self-
energy W–G is proportional to pµ

W and evaluates to

ΓWG
W =

NCα(M2
H± −M2

A)
4πM2

W s2
W(p2

W −M2
W )
{m2

dB0(p2
W , m2

d, m
2
u)

+[m2
d −m2

u]B1(p2
W , m2

d, m
2
u)},

ΓWG
H = 0. (3.8)

4 On-mass-shell renormalization

The parameters entering the tree-level amplitude in (2.4)
are all standard model parameters (e and sW). This fact
will render the one loop renormalization rather simple, in
the sense that all non-standard parameters appearing first
at the one loop level (like tanβ), will not get renormal-
ized. This is in contrast to the calculation in [22] for the
process H+ → hW+ which explicitly contains the fac-
tor cos2(β − α) at tree level. Therefore, renormalization
conditions related to the definition of tanβ are not explic-
itly needed here. We will need, however, to renormalize
the electric charge, the Weinberg angle, the charged Higgs
wave function, the CP odd Higgs wave function and the
W gauge boson wave function. In our case the W± gauge
boson mixes with the Goldstone boson G±, by virtue of
Lorentz invariance of the self-energy; therefore, ΣG+W −

µ is
proportional to pW

µ and so if the W is on shell, the mixing
would have a vanishing contribution, but in the off-shell
case we have to take this mixing into account.

In what follows we will mainly follow the on-shell renor-
malization developed by Santos et al. [22] which is the
generalization to the 2HDM of the Aoki et al. on-shell
renormalization scheme [23,24]. The crucial point in this
scheme is that all fields and masses are renormalized after
the diagonalization of the bare mass matrices. Another
important point in this scheme is that the gauge fixing is
written in terms of the renormalized parameters and fields
and as a consequence it does not contain any counterterm.

4.1 Vertex H+A0W + counterterm

To obtain the renormalized vertex W−A0H+ vertex we
have to make the following substitutions in (2.1):

Wµ → Z
1/2
W Wµ, (4.1)

H± → Z
1/2
H+H+H±, (4.2)

A0 → Z
1/2
A A0,

e→ Zee = (1 + δZe)e,
M2

W →M2
W + δM2

W , (4.3)
M2

Z →M2
Z + δM2

Z .

Note that in the on-shell scheme, the Weinberg angle is
defined as s2

W = 1−M2
W /M2

Z . Therefore, the counterterm
of sW is completely fixed by the counterterm of the W
and Z boson masses and is given by

δsW

sW
= −1

2
c2
W

s2
W

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
. (4.4)

Setting Z1/2 = 1 + (1/2)δZ, one obtains the following
counterterm:

δL =
e

2sW
W+

µ

(
H− ↔

∂
µA0

)
(4.5)
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×
(

1
2
δZW +

1
2
δZA0 +

1
2
δZH±H± + δZe − δsW

sW

)
.

– In the on-mass-shell scheme the counterterms can be
fixed by the following renormalization conditions:
First, the on-shell condition for the charged Higgs bo-
son H±, CP odd A0 and the W and Z gauge bosons.
We choose to identify the physical mass with the cor-
responding parameter in the renormalized lagrangian,
and require the residue of the propagator to have its
tree-level value, i.e.,

δM2 = ReΣ(M2) and δZ = −∂Σ(k2)
∂k2 |k2=M2 ,(4.6)

where Σ(k2) is the bare self-energy of the H±, A0 or
W .

– The electric charge e is defined as in the minimal stan-
dard model [24,25].

– Tadpoles are renormalized in such a way that the renor-
malized tadpoles vanish: Th + δth = 0, TH + δtH = 0.
These conditions guarantee that v1,2 appearing in the
renormalized lagrangian are located at the minimum
of the one loop potential.

Using these renormalization conditions and as is shown in
[24], the renormalization constant of the electric charge
and counterterm of gauge boson mass are given by

δZe = −1
2
δZγγ +

1
2

sW

cW
δZZγ

=
1
2

∂Σγγ
T (k2)
∂k2 |k2=0 +

sW

cW

ΣγZ
T (0)
M2

Z

, (4.7)

δM2
W = ΣWW

T (M2
W ) and δM2

Z = ΣZZ
T (M2

Z), (4.8)

where ΣWW
T , ΣZZ

T Σγγ
T are, respectively, the W , Z and

photon self-energies depicted in Fig. 2b4,5,6; the T index is
to denote that we take only the transverse part. We stress
at this stage that the fermionic contribution to the mixing
ΣγZ

T (k2) vanishes at k2 = 0.

4.2 Counterterm for the W self-energy
and the mixing W–G

One obtains the counterterm for the W–W self-energy by
substituting (4.1) and (4.4) in the W lagrangian:

δ(WµW ν) = i(gµν − pµ
W pν

W

p2
W

)(δM2
W + (M2

W − p2
W )δZW )

+i
pµ

W pν
W

p2
W

(δM2
W + M2

W δZW ). (4.9)

All the counterterms appearing in δ(WµWν) are fixed by
the renormalization conditions fixed above (4.6) and (4.8).
As we have mentioned above, the W+ boson and the G+

Goldstone mix. To treat this mixing, Santos et al. [22]
have considered the mixing of G+–H−, which they have
renormalized in the following way:

H± → Z
1/2
H+H+H± + Z

1/2
H+G+G±, (4.10)

G± → Z
1/2
G+G+G± + Z

1/2
G+H+H±. (4.11)

At the one loop level Z
1/2
ii = 1 + 1/2δZii and Z

1/2
ij = δZij

where δZij = O(α). These four renormalization constants
together with the counterterm mass of the charged Higgs
bosons are fixed by imposing the on-shell condition (mass
located at the pole of the propagator and residue equal to
one) and the vanishing mixing both for the ΣG+H+(k2)
self-energy at k2 = M2

H± and the ΣH+G+(k2) self-energy
at k2 = 0. Note that the Goldstone boson receives its
renormalized mass from the gauge fixing lagrangian. Be-
fore introducing this lagrangian the Goldstone boson is
massless, and so the renormalization conditions imposed
on the propagator of the Goldstone and its mixing with
charged Higgs boson will be fixed at k2 = 0.

At the one loop level the renormalization constants
δZH+H+ and δZG+G+ are given by

δZH+H+ = −∂ΣH+H+(k2)
∂k2 |k2=M2

H±
and

δZG+G+ = −∂ΣG+G+(k2)
∂k2 |k2=0. (4.12)

Performing the replacement (4.1), (4.4) and (4.11) in the
W gauge fixing term iMW ∂µW+

µ G−, generated from the
covariant derivative, one finds the following counterterm
for the mixing W+–G−:

δ(W+
µ G−) =

ipµ
W MW

2
(
δM2

W

M2
W

+ δZW + δZG+G+). (4.13)

This completes the set of counterterms needed for our
study. The renormalization constants of the wave func-
tion and the mass counterterms are given in Appendix
B.

4.3 Back to counterterms form factors

After the short discussion in Sect. 4.2 about the on-shell
renormalization we are using, we are now able to give
the expressions of the counterterms δΓ vertex

W,H , δΓW+W −
W,H ,

δΓW+G−
W defined in (3.3) and (3.4):

δΓ vertex
W = −

(
δZe − δsW

sW
+

1
2
(δZH+H+ + δZA0 + δZW )

)
,

δΓ vertex
H = −2δΓ vertex

W ,

δΓWW
W = {(M2

H± + p2
W −m2

A)δZW − δM2
W

−M2
W δZW }/(p2

W −M2
W ), (4.14)

δΓWW
H = 2{δM2

W + (M2
W − p2

W )δZW }/(p2
W −M2

W ),

δΓWG
W =

1
2
(M2

H± −M2
A)

×
{

δM2
W

M2
W

+ δZW + δZG+G+

}
/(p2

W −M2
W ).

5 Numerical results and discussion

In the previous section we have summarized the analytical
formulae for the fermionic O(α) radiative correction to
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the decay H+ → W+A0. In this section we focus on the
numerical analysis. We take the following experimental
input for the physical parameters [26]:

– the fine structure constant: α = e2/4π = 1/137.03598.
– the gauge boson masses: MZ = 91.187 GeV,

MW = 80.41 GeV and ΓW = 2.06 GeV,
– the input lepton masses: me = 0.511MeV,

mµ = 0.1057 GeV, mτ = 1.784 GeV
– for the light quark masses we use the effective values

which are chosen in such a way that the experimentally
extracted hadronic part of the vacuum polarizations is
reproduced [27]:

md = 47 MeV mu = 47 MeV ms = 150 MeV,

mc = 1.55 GeV mb = 4.5 GeV.

For the top quark mass we take mt = 175 GeV. In the
on-shell scheme we consider, sin2 θW is given by sin2 θW ≡
1−M2

W /M2
Z , and this expression is valid beyond tree level.

In the on-shell case it can be shown that the interfer-
ence term 2ReM0∗M1, found from squaring the one loop
corrected amplitude |M0 +M1|2, is equal to ΓH |M0|2.
Hence the one loop corrected width Γ 1

on can be written as

Γ 1
on = (1 + ΓH)Γ 0

on,

with ΓH (defined by (3.4) being interpreted as the frac-
tional contribution to the tree-level width, Γ 0

on. Note that
ΓW (3.3) does not contribute to Γ 1

on. In the off-shell case,
and taking the final state fermions to be massless,
2ReM0∗M1 is again equal to ΓH |M0|2, although ΓH now
has a dependence on E1 and E2 and thus cannot be factor-
ized out of the phase space integral. Therefore, we define
the fractional contribution to the tree-level width as δΓoff ,
with

Γ 1
off = (1 + δΓoff)Γ 0

off .

Since ΓW does not contribute to the corrected matrix ele-
ment it is evident that the W+G+ mixing has a vanishing
contribution and is given in Sect. 3.3 for completeness.

We now briefly consider the constraints on the masses
of the Higgs bosons that can be extracted from current
precision measurements of the ρ parameter. In the SM
(and 2HDM) ρ is defined by ρ = M2

W /(M2
Z cos2 θW) =

1 to all orders. This definition of the ρ parameter can
regarded as the on-shell definition of the Weinberg angle
to all orders. When new physics (say coming from the
2HDM) is present, and in order to keep the correct on-shell
definition of ρ parameter, the static 2HDM contributions
[28] are constrained by −0.0017 ≤ δρ ≤ 0.0027 at the 2σ
level [29].

Imposing this condition and using the formulae in [28]
we plot in Fig. 3 the allowable values of MH± and MA.
We vary all Higgs masses up to 500 GeV and respect the
current experimental lower limits for 5000 randomly cho-
sen values. In Fig. 3 the triangles (points) disallow (allow)
the decay H± → AW ∗. From the figure we can clearly
see that for MH± ≥ 100 GeV the vast majority of the al-
lowed parameter space satisfies MH± ≥ MA, thus imply-
ing that the decay H± → AW (∗) will be open for MH±

Fig. 3. Scatter plot of values of MH± and MA consistent with
measurements of ρ. Triangles disallow the decay H± → AW (∗)

which is of interest at the LHC and the Tevatron. For
MH± ≤ 100 GeV (i.e. the LEP-II range) it is easier to
find MH± ≤MA.

5.1 On-shell W gauge boson

We now present our results for the case of the W bo-
son being on shell. There are three unknown parameters
which determine the magnitude of the one loop corrected
width Γ 1

on: MH± , MA and tanβ. This is in contrast to the
decay H± → hW in which the mixing angle α and the
mass of the heavier CP even Higgs boson (H) enter the
calculation [22]. We stress that this latter analysis only
considered the top–bottom loops, while we include all the
fermion corrections and find that the light fermion loops
are not entirely negligible. Moreover, there can be signif-
icant interference among the various contributions, both
destructive and constructive. We consider both Model I
and Model II, which have effectively identical results at
small tanβ, although they differ at large tanβ.

Let us discuss first the effect of a relatively light
charged Higgs (MH± < 250 GeV) and a very light CP odd
(MA ≈ 35 GeV) on ΓH . In Fig. 4 we plot ΓH (fractional
correction to the tree-level width) in Model II as a function
of MH± for several values of tanβ. We note first that for
a fixed value of tanβ, ΓH is insensitive to the variation in
MA when MH± is varied from 120 to 260 GeV. The peaks
correspond to the opening of the decay H+ → t̄b. For
small tanβ and MH± < 170 GeV the correction is rather
small (≈ 2%); when MH± > 180 GeV one can reach a
correction of 10%. In the case where tan β is large, the
effect comes exclusively from the bottom quark mass and
is around 10%.
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Fig. 4. ΓH as a function of MH± (Model II) for MA = 35 GeV,
tan β = 0.5, 1.0, 4 and 70

Fig. 5. ΓH as a function of MA (Models I and II) for tan β =
0.6, 1.0 and 2.5

In Fig. 5 we plot ΓH as a function of MA, taking
MH± = 570 GeV and three small values of tanβ. Since we
are not considering a large tanβ this plot is relevant for
both Model I and II. For MA less than 300 GeV or heavier
than 360 GeV the effect is about 5%. When MA becomes
close to 2mt a sharp peak appears, and this corresponds
to the opening of the channel A0 → tt̄, the maximal effect
in this case being around 50%. For MA away from this
threshold value (MA ≈ 330 → 345 GeV) and for small

Fig. 6. ΓH as a function of tan β (Model II) for tan β ≥ 20

tanβ one can have a correction of about −14%→ −41%.
As tanβ increases one quickly approaches a horizontal line
at 3.3%. These effects are explained as follows: the ttb loop
correction is proportional to Yuu and dominates the bbt
loop correction at small tanβ because mt � mb . Since
Yuu is proportional to 1/ tanβ we can explain the tanβ
dependence in Fig. 5. As tanβ increases the contribution
of the ttb loop weakens rapidly and the dominant contribu-
tion to the corrected width becomes that of the renormal-
ized e and sW, giving a fixed value of ΓH ≈ 3.3% which is
very insensitive to tanβ (note that the bbt loop in Model
II is proportional to tanβ – see below). We do not notice
an obvious correlation between MH± and ΓH ; for the op-
timal case considered of tan β = 0.5 and MA ≈ 330 GeV,
varying MH± from 450 GeV to 800 GeV causes ΓH to fall
from −18% to −27%.

In Fig. 6 we plot ΓH in Model II as a function of tanβ
for tanβ ≥ 20. In Model I all the fermion loops decouple
as tan β increases and one has ΓH ≈ 3.3% for tanβ ≥ 4.
In Model II the bbt loop dominates with increasing tanβ
and for tanβ ≥ 20 the value of ΓH starts to differ from
the corresponding value in Model I. Again one can find
sizable negative corrections, with the largest occurring for
smaller MA, i.e. the closer MA is to 2mb, the more on shell
the virtual b quarks are.

In Fig. 7 we show graphically the relative magnitude
of the sum of the heavy quark loops, ttb and bbt, com-
pared to the sum of the remaining fermion loops (Γlight).
Since we plot only low values of tanβ the ttb contribution
dominates the bbt loop and so we label the sum of the ttb
and bbt contributions as Γttb. One can see that Γlight is of
comparable strength to the heavy quark loops unless MA

is close to 2mt. In addition there can be constructive or
destructive interference, which is shown in Fig. 7 by the
sign of the ratio.
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Fig. 7. Γttb/Γlight as a function of small tan β for several values
of MA (Models I and II)

5.2 Off-shell W gauge boson

We now consider the case of the W gauge boson being
off shell. Since the decay H± → AW ∗ is possible for a
light H± in range at LEP-II we shall present results for
MH± = 80 GeV, which is also in the mass region consid-
ered problematic for detection channels which make use of
the conventional decays H± → τντ , cs. As is mentioned
in the introduction, charged Higgs bosons of Model II are
excluded from the LEP-II discovery range by precision
measurements of b→ sγ. Our discussion will therefore be
focussed on Model I. In the massless fermion final state
limit, the WW self-energy is the only additional contri-
bution to the one loop corrected width for the off-shell
decay1. The WW self-energy is the standard diagram and
does not depend on tanβ. Hence all the tanβ dependence
is contained in the vertex contribution and in the case of
Model I it is enhanced when tanβ is small.

In Fig. 8 we plot the magnitude of the one loop cor-
rections, δΓoff , as a function of small tanβ for two values
of MA. We can see that for tanβ ≥ 2 one approaches a
fixed value (≈ 2%) for δΓoff – this is to be interpreted (as
before) as the fermion loops decoupling, leaving a tanβ
independent value which comes from the WW self-energy
and from the renormalized e and sW in the vertex contri-
bution counterterms. For low tanβ the one loop correc-
tions are pulled negative. Very large corrections of up to
−90% are possible for exceptionally small (≈ 0.1) values
of tanβ, although such values are strongly disfavored by

1 Note that for the W being off shell, there are extra contri-
butions coming from box diagrams which will be considered in
[30]

Fig. 8. δΓoff as a function of small tan β and for MA = 15,
40 GeV (Model I)

measurements of Rb which require tanβ ≥ 1.8 (95% c.l.)
for MH± = 85 GeV [8].

6 Conclusions

We have computed the Yukawa coupling corrections to the
decay H+ → A0W+ in the case of an on-shell and off-shell
W gauge boson. We have included in our analysis both
top–bottom contributions and light fermion contributions,
the latter being non-negligible. These may interfere de-
structively or constructively with the former. Restrictions
on the possible values of the Higgs boson masses from
considering the ρ parameter were also included and were
found to give in the majority of the cases MH± > MA. In
the on-shell case, we studied the sensitivity of the Yukawa
corrections to tanβ, and found similar effects for small
tanβ in both Model I and Model II, which can reach 50%
for mA ≈ 2mt. For large tanβ, in Model I all the fermion
corrections decouple and reach a constant value of 3.3%
for tanβ > 4; in Model II, the top mass effect is suppressed
while the bottom mass effect is increased for tan β > 20,
allowing sizeable corrections of 10% or greater. For the
case of the W gauge boson being off shell, the charged
Higgs bosons in the LEP-II range and tanβ not too small,
the corrections are rather small and do not surpass 2%.
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Appendix A: Passarino–Veltman functions

Let us recall the definitions of the scalar and tensor inte-
grals [21] we use.

A.1 One point function

The one point function is defined by

A0(m2
0) =

(2πµ)4−d

iπ2

∫
ddq

1
[q2 −m2

0]
;

µ is an arbitrary renormalization scale.

A0(m2
0) = m2

0 [1 + ∆0] +O(d− 4). (A.1)

The UV divergences are contained in ∆0 which is given
by

∆i =
2

4− d
− γE + log(4π) + log

µ2

m2
i

; (A.2)

note that in dimensional regularization A0(0) = 0.

A.2 Two point functions

The two points functions are defined by

B0,µ,µν(p2
1, m

2
0, m

2
1) =

(2πµ)4−d

iπ2

×
∫

ddq
1, qµ, qµν

[q2 −m2
0][(q + p1)2 −m2

1]
.

We have

B0 =
1
2
(∆0 + ∆1) (A.3)

−
∫ 1

0
dxLog

x2p2
1 − x(p2

1 −m2
0 + m2

1) + m2
1 − iε

m0m1
.

The derivative of the B0 function is defined as

B
′
0[X, m2

1, m
2
2] =

∂

∂p2 B0[p2, m2
1, m

2
2]|p2=X .

Note that A0 can be expressed in terms of B0:

A0(m2) = m2 + m2B0(0, m2, m2).

Using Lorentz invariance, we have

Bµ = p1µB1,

Bµν = p1µp1νB21 + gµνB22.

A.3 Three point functions

The three point functions are defined as

C0,µ,µν(p2
1, p

2
12, p

2
2, m

2
0, m

2
1, m

2
2) =

1
iπ2

∫
dnq

1, qµ, qµqν

[q2 −m2
0][(q + p1)2 −m2

1][(q + p2)2 −m2
2]

,

where p2
12 = (p1 + p2)2. Using Lorentz invariance, Cµ and

Cµν can be written as

Cµ = p1µC1 + p2µC2, (A.4)
Cµν = gµνC00 + p1µp1νC11 + p2µp2νC22

+(p1µp2ν + p2µp1ν)C12. (A.5)

Appendix B: Renormalization constants

Here we give all the renormalization constants necessary
to compute the counterterms defined in (4.15).

B.1 Gauge bosons self-energies

Let ieγµ(VL(1−γ5)/2+VR(1+γ5)/2) be the general cou-
pling of the gauge bosons Vµ to a pair of fermions f and
f ′. The coefficient of −gµν of the self-energy of the gauge
boson Vµ is given by

ΣV V
T (p2) = −NCα

2π
{(VL

2 + VR
2)[A0(m2

f ′)

−2B22(p2, m2
f ′ , m2

f ) + p2B1(p2, m2
f ′ , m2

f )]

+mf [mf (VL
2 + VR

2)− 2mf ′VLVR]

×B0(p2, m2
f ′ , m2

f )}. (B.1)

We have
– V = Z, f = f ′, ZL = −1/(sWcW )(Tf − efs2

W), ZR =
(efs2

W)/(sWcW ), with Tu = 1/2 and Td = −1/2.
– V = γ, f = f ′, γL = γR = −ef .
– V = W , f = u and f ′ = d WL = −1/(21/2sW), WR =

0.
The renormalization constant of the electric charge is

given by

δZe = −1
2
δZγγ =

1
2

∂Σγγ
T (k2)
∂k2 |k2=0

=
1
2

NCα

3π

{
e2
d

[
−1

3
+ B0(0, m2

d, m
2
d)

+ 2m2
dB

′
0(0, m2

d, m
2
d)

]
,

+ e2
u

[
−1

3
+ B0(0, m2

u, m2
u)

+ 2m2
uB

′
0(0, m2

u, m2
u)

]}
. (B.2)

The mass counterterms for the gauge boson W and Z are
given by

δM2
W = ΣWW

T (p2 = M2
W ),

δM2
Z = ΣZZ

T (p2 = M2
Z). (B.3)
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B.2 Wave function renormalization

The wave function renormalization constants for the W
gauge boson can be obtained from the self-energy as

δZW = −∂ΣWW
T (k2)
∂k2 |k2=M2

W

=
α

4πM2
W s2

W
{M2

W /3 + (m2
d −m2

u)2

×B0(0, m2
d, m

2
u)/M2

W

−(m2
d −m2

u)2 + M4
W )B0(M2

W , m2
d, m

2
u)/M2

W

+[(m2
d −m2

u)2 + m2
uM2

W − 2M4
W + 2m2

dM
2
W ]B′

0

×(M2
W , m2

d, m
2
u)}. (B.4)

The renormalization constants of the charged Higgs, CP
odd Higgs and the Goldstone boson wave function are
given by

δZH+H+ =
NCα

4π
(−(Y L

ud

2
+ Y R

ud

2
)B0(M2

H±, m2
d, m

2
u)

+([m2
d + m2

u −M2
H± ](Y L

ud

2
+ Y R

ud

2
)

+4mdmuY L
udY

R
ud)B

′
0(M

2
H± , m2

d, m
2
u)),

δZA0 = −NC
α

2π
{Y 2

dd[B0(M2
A, m2

d, m
2
d)

+M2
AB

′
0(M

2
A, m2

d, m
2
d)]

+Y 2
uu[B0(M2

A, m2
u, m2

u)

+M2
AB

′
0(M

2
A, m2

u, m2
u)]}, (B.5)

δZG+G+ =
αNC

8πM2
W s2

W
{−(m2

d + m2
u)B0(0, m2

d, m
2
u)

+(m2
d −m2

u)2B
′
0(0, m2

d, m
2
u)}.
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